26 research outputs found

    Self-Discriminative Modeling for Anomalous Graph Detection

    Full text link
    This paper studies the problem of detecting anomalous graphs using a machine learning model trained on only normal graphs, which has many applications in molecule, biology, and social network data analysis. We present a self-discriminative modeling framework for anomalous graph detection. The key idea, mathematically and numerically illustrated, is to learn a discriminator (classifier) from the given normal graphs together with pseudo-anomalous graphs generated by a model jointly trained, where we never use any true anomalous graphs and we hope that the generated pseudo-anomalous graphs interpolate between normal ones and (real) anomalous ones. Under the framework, we provide three algorithms with different computational efficiencies and stabilities for anomalous graph detection. The three algorithms are compared with several state-of-the-art graph-level anomaly detection baselines on nine popular graph datasets (four with small size and five with moderate size) and show significant improvement in terms of AUC. The success of our algorithms stems from the integration of the discriminative classifier and the well-posed pseudo-anomalous graphs, which provide new insights for anomaly detection. Moreover, we investigate our algorithms for large-scale imbalanced graph datasets. Surprisingly, our algorithms, though fully unsupervised, are able to significantly outperform supervised learning algorithms of anomalous graph detection. The corresponding reason is also analyzed.Comment: This work was submitted to NeurIPS 2023 but was unfortunately rejecte

    Restricted Generative Projection for One-Class Classification and Anomaly Detection

    Full text link
    We present a simple framework for one-class classification and anomaly detection. The core idea is to learn a mapping to transform the unknown distribution of training (normal) data to a known target distribution. Crucially, the target distribution should be sufficiently simple, compact, and informative. The simplicity is to ensure that we can sample from the distribution easily, the compactness is to ensure that the decision boundary between normal data and abnormal data is clear and reliable, and the informativeness is to ensure that the transformed data preserve the important information of the original data. Therefore, we propose to use truncated Gaussian, uniform in hypersphere, uniform on hypersphere, or uniform between hyperspheres, as the target distribution. We then minimize the distance between the transformed data distribution and the target distribution while keeping the reconstruction error for the original data small enough. Comparative studies on multiple benchmark datasets verify the effectiveness of our methods in comparison to baselines

    Low-Rank Tensor Recovery with Euclidean-Norm-Induced Schatten-p Quasi-Norm Regularization

    Full text link
    The nuclear norm and Schatten-pp quasi-norm of a matrix are popular rank proxies in low-rank matrix recovery. Unfortunately, computing the nuclear norm or Schatten-pp quasi-norm of a tensor is NP-hard, which is a pity for low-rank tensor completion (LRTC) and tensor robust principal component analysis (TRPCA). In this paper, we propose a new class of rank regularizers based on the Euclidean norms of the CP component vectors of a tensor and show that these regularizers are monotonic transformations of tensor Schatten-pp quasi-norm. This connection enables us to minimize the Schatten-pp quasi-norm in LRTC and TRPCA implicitly. The methods do not use the singular value decomposition and hence scale to big tensors. Moreover, the methods are not sensitive to the choice of initial rank and provide an arbitrarily sharper rank proxy for low-rank tensor recovery compared to nuclear norm. We provide theoretical guarantees in terms of recovery error for LRTC and TRPCA, which show relatively smaller pp of Schatten-pp quasi-norm leads to tighter error bounds. Experiments using LRTC and TRPCA on synthetic data and natural images verify the effectiveness and superiority of our methods compared to baseline methods

    Centrality Graph Convolutional Networks for Skeleton-based Action Recognition

    Full text link
    The topological structure of skeleton data plays a significant role in human action recognition. Combining the topological structure with graph convolutional networks has achieved remarkable performance. In existing methods, modeling the topological structure of skeleton data only considered the connections between the joints and bones, and directly use physical information. However, there exists an unknown problem to investigate the key joints, bones and body parts in every human action. In this paper, we propose the centrality graph convolutional networks to uncover the overlooked topological information, and best take advantage of the information to distinguish key joints, bones, and body parts. A novel centrality graph convolutional network firstly highlights the effects of the key joints and bones to bring a definite improvement. Besides, the topological information of the skeleton sequence is explored and combined to further enhance the performance in a four-channel framework. Moreover, the reconstructed graph is implemented by the adaptive methods on the training process, which further yields improvements. Our model is validated by two large-scale datasets, NTU-RGB+D and Kinetics, and outperforms the state-of-the-art methods
    corecore